Source: mat3.js

/* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */

import * as glMatrix from "./common.js";

/**
 * 3x3 Matrix
 * @module mat3
 */

/**
 * Creates a new identity mat3
 *
 * @returns {mat3} a new 3x3 matrix
 */
export function create() {
  let out = new glMatrix.ARRAY_TYPE(9);
  out[0] = 1;
  out[1] = 0;
  out[2] = 0;
  out[3] = 0;
  out[4] = 1;
  out[5] = 0;
  out[6] = 0;
  out[7] = 0;
  out[8] = 1;
  return out;
}

/**
 * Copies the upper-left 3x3 values into the given mat3.
 *
 * @param {mat3} out the receiving 3x3 matrix
 * @param {mat4} a   the source 4x4 matrix
 * @returns {mat3} out
 */
export function fromMat4(out, a) {
  out[0] = a[0];
  out[1] = a[1];
  out[2] = a[2];
  out[3] = a[4];
  out[4] = a[5];
  out[5] = a[6];
  out[6] = a[8];
  out[7] = a[9];
  out[8] = a[10];
  return out;
}

/**
 * Creates a new mat3 initialized with values from an existing matrix
 *
 * @param {mat3} a matrix to clone
 * @returns {mat3} a new 3x3 matrix
 */
export function clone(a) {
  let out = new glMatrix.ARRAY_TYPE(9);
  out[0] = a[0];
  out[1] = a[1];
  out[2] = a[2];
  out[3] = a[3];
  out[4] = a[4];
  out[5] = a[5];
  out[6] = a[6];
  out[7] = a[7];
  out[8] = a[8];
  return out;
}

/**
 * Copy the values from one mat3 to another
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the source matrix
 * @returns {mat3} out
 */
export function copy(out, a) {
  out[0] = a[0];
  out[1] = a[1];
  out[2] = a[2];
  out[3] = a[3];
  out[4] = a[4];
  out[5] = a[5];
  out[6] = a[6];
  out[7] = a[7];
  out[8] = a[8];
  return out;
}

/**
 * Create a new mat3 with the given values
 *
 * @param {Number} m00 Component in column 0, row 0 position (index 0)
 * @param {Number} m01 Component in column 0, row 1 position (index 1)
 * @param {Number} m02 Component in column 0, row 2 position (index 2)
 * @param {Number} m10 Component in column 1, row 0 position (index 3)
 * @param {Number} m11 Component in column 1, row 1 position (index 4)
 * @param {Number} m12 Component in column 1, row 2 position (index 5)
 * @param {Number} m20 Component in column 2, row 0 position (index 6)
 * @param {Number} m21 Component in column 2, row 1 position (index 7)
 * @param {Number} m22 Component in column 2, row 2 position (index 8)
 * @returns {mat3} A new mat3
 */
export function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {
  let out = new glMatrix.ARRAY_TYPE(9);
  out[0] = m00;
  out[1] = m01;
  out[2] = m02;
  out[3] = m10;
  out[4] = m11;
  out[5] = m12;
  out[6] = m20;
  out[7] = m21;
  out[8] = m22;
  return out;
}

/**
 * Set the components of a mat3 to the given values
 *
 * @param {mat3} out the receiving matrix
 * @param {Number} m00 Component in column 0, row 0 position (index 0)
 * @param {Number} m01 Component in column 0, row 1 position (index 1)
 * @param {Number} m02 Component in column 0, row 2 position (index 2)
 * @param {Number} m10 Component in column 1, row 0 position (index 3)
 * @param {Number} m11 Component in column 1, row 1 position (index 4)
 * @param {Number} m12 Component in column 1, row 2 position (index 5)
 * @param {Number} m20 Component in column 2, row 0 position (index 6)
 * @param {Number} m21 Component in column 2, row 1 position (index 7)
 * @param {Number} m22 Component in column 2, row 2 position (index 8)
 * @returns {mat3} out
 */
export function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {
  out[0] = m00;
  out[1] = m01;
  out[2] = m02;
  out[3] = m10;
  out[4] = m11;
  out[5] = m12;
  out[6] = m20;
  out[7] = m21;
  out[8] = m22;
  return out;
}

/**
 * Set a mat3 to the identity matrix
 *
 * @param {mat3} out the receiving matrix
 * @returns {mat3} out
 */
export function identity(out) {
  out[0] = 1;
  out[1] = 0;
  out[2] = 0;
  out[3] = 0;
  out[4] = 1;
  out[5] = 0;
  out[6] = 0;
  out[7] = 0;
  out[8] = 1;
  return out;
}

/**
 * Transpose the values of a mat3
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the source matrix
 * @returns {mat3} out
 */
export function transpose(out, a) {
  // If we are transposing ourselves we can skip a few steps but have to cache some values
  if (out === a) {
    let a01 = a[1], a02 = a[2], a12 = a[5];
    out[1] = a[3];
    out[2] = a[6];
    out[3] = a01;
    out[5] = a[7];
    out[6] = a02;
    out[7] = a12;
  } else {
    out[0] = a[0];
    out[1] = a[3];
    out[2] = a[6];
    out[3] = a[1];
    out[4] = a[4];
    out[5] = a[7];
    out[6] = a[2];
    out[7] = a[5];
    out[8] = a[8];
  }

  return out;
}

/**
 * Inverts a mat3
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the source matrix
 * @returns {mat3} out
 */
export function invert(out, a) {
  let a00 = a[0], a01 = a[1], a02 = a[2];
  let a10 = a[3], a11 = a[4], a12 = a[5];
  let a20 = a[6], a21 = a[7], a22 = a[8];

  let b01 = a22 * a11 - a12 * a21;
  let b11 = -a22 * a10 + a12 * a20;
  let b21 = a21 * a10 - a11 * a20;

  // Calculate the determinant
  let det = a00 * b01 + a01 * b11 + a02 * b21;

  if (!det) {
    return null;
  }
  det = 1.0 / det;

  out[0] = b01 * det;
  out[1] = (-a22 * a01 + a02 * a21) * det;
  out[2] = (a12 * a01 - a02 * a11) * det;
  out[3] = b11 * det;
  out[4] = (a22 * a00 - a02 * a20) * det;
  out[5] = (-a12 * a00 + a02 * a10) * det;
  out[6] = b21 * det;
  out[7] = (-a21 * a00 + a01 * a20) * det;
  out[8] = (a11 * a00 - a01 * a10) * det;
  return out;
}

/**
 * Calculates the adjugate of a mat3
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the source matrix
 * @returns {mat3} out
 */
export function adjoint(out, a) {
  let a00 = a[0], a01 = a[1], a02 = a[2];
  let a10 = a[3], a11 = a[4], a12 = a[5];
  let a20 = a[6], a21 = a[7], a22 = a[8];

  out[0] = (a11 * a22 - a12 * a21);
  out[1] = (a02 * a21 - a01 * a22);
  out[2] = (a01 * a12 - a02 * a11);
  out[3] = (a12 * a20 - a10 * a22);
  out[4] = (a00 * a22 - a02 * a20);
  out[5] = (a02 * a10 - a00 * a12);
  out[6] = (a10 * a21 - a11 * a20);
  out[7] = (a01 * a20 - a00 * a21);
  out[8] = (a00 * a11 - a01 * a10);
  return out;
}

/**
 * Calculates the determinant of a mat3
 *
 * @param {mat3} a the source matrix
 * @returns {Number} determinant of a
 */
export function determinant(a) {
  let a00 = a[0], a01 = a[1], a02 = a[2];
  let a10 = a[3], a11 = a[4], a12 = a[5];
  let a20 = a[6], a21 = a[7], a22 = a[8];

  return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
}

/**
 * Multiplies two mat3's
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the first operand
 * @param {mat3} b the second operand
 * @returns {mat3} out
 */
export function multiply(out, a, b) {
  let a00 = a[0], a01 = a[1], a02 = a[2];
  let a10 = a[3], a11 = a[4], a12 = a[5];
  let a20 = a[6], a21 = a[7], a22 = a[8];

  let b00 = b[0], b01 = b[1], b02 = b[2];
  let b10 = b[3], b11 = b[4], b12 = b[5];
  let b20 = b[6], b21 = b[7], b22 = b[8];

  out[0] = b00 * a00 + b01 * a10 + b02 * a20;
  out[1] = b00 * a01 + b01 * a11 + b02 * a21;
  out[2] = b00 * a02 + b01 * a12 + b02 * a22;

  out[3] = b10 * a00 + b11 * a10 + b12 * a20;
  out[4] = b10 * a01 + b11 * a11 + b12 * a21;
  out[5] = b10 * a02 + b11 * a12 + b12 * a22;

  out[6] = b20 * a00 + b21 * a10 + b22 * a20;
  out[7] = b20 * a01 + b21 * a11 + b22 * a21;
  out[8] = b20 * a02 + b21 * a12 + b22 * a22;
  return out;
}

/**
 * Translate a mat3 by the given vector
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the matrix to translate
 * @param {vec2} v vector to translate by
 * @returns {mat3} out
 */
export function translate(out, a, v) {
  let a00 = a[0], a01 = a[1], a02 = a[2],
    a10 = a[3], a11 = a[4], a12 = a[5],
    a20 = a[6], a21 = a[7], a22 = a[8],
    x = v[0], y = v[1];

  out[0] = a00;
  out[1] = a01;
  out[2] = a02;

  out[3] = a10;
  out[4] = a11;
  out[5] = a12;

  out[6] = x * a00 + y * a10 + a20;
  out[7] = x * a01 + y * a11 + a21;
  out[8] = x * a02 + y * a12 + a22;
  return out;
}

/**
 * Rotates a mat3 by the given angle
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the matrix to rotate
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {mat3} out
 */
export function rotate(out, a, rad) {
  let a00 = a[0], a01 = a[1], a02 = a[2],
    a10 = a[3], a11 = a[4], a12 = a[5],
    a20 = a[6], a21 = a[7], a22 = a[8],

    s = Math.sin(rad),
    c = Math.cos(rad);

  out[0] = c * a00 + s * a10;
  out[1] = c * a01 + s * a11;
  out[2] = c * a02 + s * a12;

  out[3] = c * a10 - s * a00;
  out[4] = c * a11 - s * a01;
  out[5] = c * a12 - s * a02;

  out[6] = a20;
  out[7] = a21;
  out[8] = a22;
  return out;
};

/**
 * Scales the mat3 by the dimensions in the given vec2
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the matrix to rotate
 * @param {vec2} v the vec2 to scale the matrix by
 * @returns {mat3} out
 **/
export function scale(out, a, v) {
  let x = v[0], y = v[1];

  out[0] = x * a[0];
  out[1] = x * a[1];
  out[2] = x * a[2];

  out[3] = y * a[3];
  out[4] = y * a[4];
  out[5] = y * a[5];

  out[6] = a[6];
  out[7] = a[7];
  out[8] = a[8];
  return out;
}

/**
 * Creates a matrix from a vector translation
 * This is equivalent to (but much faster than):
 *
 *     mat3.identity(dest);
 *     mat3.translate(dest, dest, vec);
 *
 * @param {mat3} out mat3 receiving operation result
 * @param {vec2} v Translation vector
 * @returns {mat3} out
 */
export function fromTranslation(out, v) {
  out[0] = 1;
  out[1] = 0;
  out[2] = 0;
  out[3] = 0;
  out[4] = 1;
  out[5] = 0;
  out[6] = v[0];
  out[7] = v[1];
  out[8] = 1;
  return out;
}

/**
 * Creates a matrix from a given angle
 * This is equivalent to (but much faster than):
 *
 *     mat3.identity(dest);
 *     mat3.rotate(dest, dest, rad);
 *
 * @param {mat3} out mat3 receiving operation result
 * @param {Number} rad the angle to rotate the matrix by
 * @returns {mat3} out
 */
export function fromRotation(out, rad) {
  let s = Math.sin(rad), c = Math.cos(rad);

  out[0] = c;
  out[1] = s;
  out[2] = 0;

  out[3] = -s;
  out[4] = c;
  out[5] = 0;

  out[6] = 0;
  out[7] = 0;
  out[8] = 1;
  return out;
}

/**
 * Creates a matrix from a vector scaling
 * This is equivalent to (but much faster than):
 *
 *     mat3.identity(dest);
 *     mat3.scale(dest, dest, vec);
 *
 * @param {mat3} out mat3 receiving operation result
 * @param {vec2} v Scaling vector
 * @returns {mat3} out
 */
export function fromScaling(out, v) {
  out[0] = v[0];
  out[1] = 0;
  out[2] = 0;

  out[3] = 0;
  out[4] = v[1];
  out[5] = 0;

  out[6] = 0;
  out[7] = 0;
  out[8] = 1;
  return out;
}

/**
 * Copies the values from a mat2d into a mat3
 *
 * @param {mat3} out the receiving matrix
 * @param {mat2d} a the matrix to copy
 * @returns {mat3} out
 **/
export function fromMat2d(out, a) {
  out[0] = a[0];
  out[1] = a[1];
  out[2] = 0;

  out[3] = a[2];
  out[4] = a[3];
  out[5] = 0;

  out[6] = a[4];
  out[7] = a[5];
  out[8] = 1;
  return out;
}

/**
* Calculates a 3x3 matrix from the given quaternion
*
* @param {mat3} out mat3 receiving operation result
* @param {quat} q Quaternion to create matrix from
*
* @returns {mat3} out
*/
export function fromQuat(out, q) {
  let x = q[0], y = q[1], z = q[2], w = q[3];
  let x2 = x + x;
  let y2 = y + y;
  let z2 = z + z;

  let xx = x * x2;
  let yx = y * x2;
  let yy = y * y2;
  let zx = z * x2;
  let zy = z * y2;
  let zz = z * z2;
  let wx = w * x2;
  let wy = w * y2;
  let wz = w * z2;

  out[0] = 1 - yy - zz;
  out[3] = yx - wz;
  out[6] = zx + wy;

  out[1] = yx + wz;
  out[4] = 1 - xx - zz;
  out[7] = zy - wx;

  out[2] = zx - wy;
  out[5] = zy + wx;
  out[8] = 1 - xx - yy;

  return out;
}

/**
* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
*
* @param {mat3} out mat3 receiving operation result
* @param {mat4} a Mat4 to derive the normal matrix from
*
* @returns {mat3} out
*/
export function normalFromMat4(out, a) {
  let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
  let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
  let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
  let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];

  let b00 = a00 * a11 - a01 * a10;
  let b01 = a00 * a12 - a02 * a10;
  let b02 = a00 * a13 - a03 * a10;
  let b03 = a01 * a12 - a02 * a11;
  let b04 = a01 * a13 - a03 * a11;
  let b05 = a02 * a13 - a03 * a12;
  let b06 = a20 * a31 - a21 * a30;
  let b07 = a20 * a32 - a22 * a30;
  let b08 = a20 * a33 - a23 * a30;
  let b09 = a21 * a32 - a22 * a31;
  let b10 = a21 * a33 - a23 * a31;
  let b11 = a22 * a33 - a23 * a32;

  // Calculate the determinant
  let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;

  if (!det) {
    return null;
  }
  det = 1.0 / det;

  out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
  out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
  out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;

  out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
  out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
  out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;

  out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
  out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
  out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;

  return out;
}

/**
 * Generates a 2D projection matrix with the given bounds
 *
 * @param {mat3} out mat3 frustum matrix will be written into
 * @param {number} width Width of your gl context
 * @param {number} height Height of gl context
 * @returns {mat3} out
 */
export function projection(out, width, height) {
    out[0] = 2 / width;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = -2 / height;
    out[5] = 0;
    out[6] = -1;
    out[7] = 1;
    out[8] = 1;
    return out;
}

/**
 * Returns a string representation of a mat3
 *
 * @param {mat3} a matrix to represent as a string
 * @returns {String} string representation of the matrix
 */
export function str(a) {
  return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
          a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
          a[6] + ', ' + a[7] + ', ' + a[8] + ')';
}

/**
 * Returns Frobenius norm of a mat3
 *
 * @param {mat3} a the matrix to calculate Frobenius norm of
 * @returns {Number} Frobenius norm
 */
export function frob(a) {
  return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
}

/**
 * Adds two mat3's
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the first operand
 * @param {mat3} b the second operand
 * @returns {mat3} out
 */
export function add(out, a, b) {
  out[0] = a[0] + b[0];
  out[1] = a[1] + b[1];
  out[2] = a[2] + b[2];
  out[3] = a[3] + b[3];
  out[4] = a[4] + b[4];
  out[5] = a[5] + b[5];
  out[6] = a[6] + b[6];
  out[7] = a[7] + b[7];
  out[8] = a[8] + b[8];
  return out;
}

/**
 * Subtracts matrix b from matrix a
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the first operand
 * @param {mat3} b the second operand
 * @returns {mat3} out
 */
export function subtract(out, a, b) {
  out[0] = a[0] - b[0];
  out[1] = a[1] - b[1];
  out[2] = a[2] - b[2];
  out[3] = a[3] - b[3];
  out[4] = a[4] - b[4];
  out[5] = a[5] - b[5];
  out[6] = a[6] - b[6];
  out[7] = a[7] - b[7];
  out[8] = a[8] - b[8];
  return out;
}



/**
 * Multiply each element of the matrix by a scalar.
 *
 * @param {mat3} out the receiving matrix
 * @param {mat3} a the matrix to scale
 * @param {Number} b amount to scale the matrix's elements by
 * @returns {mat3} out
 */
export function multiplyScalar(out, a, b) {
  out[0] = a[0] * b;
  out[1] = a[1] * b;
  out[2] = a[2] * b;
  out[3] = a[3] * b;
  out[4] = a[4] * b;
  out[5] = a[5] * b;
  out[6] = a[6] * b;
  out[7] = a[7] * b;
  out[8] = a[8] * b;
  return out;
}

/**
 * Adds two mat3's after multiplying each element of the second operand by a scalar value.
 *
 * @param {mat3} out the receiving vector
 * @param {mat3} a the first operand
 * @param {mat3} b the second operand
 * @param {Number} scale the amount to scale b's elements by before adding
 * @returns {mat3} out
 */
export function multiplyScalarAndAdd(out, a, b, scale) {
  out[0] = a[0] + (b[0] * scale);
  out[1] = a[1] + (b[1] * scale);
  out[2] = a[2] + (b[2] * scale);
  out[3] = a[3] + (b[3] * scale);
  out[4] = a[4] + (b[4] * scale);
  out[5] = a[5] + (b[5] * scale);
  out[6] = a[6] + (b[6] * scale);
  out[7] = a[7] + (b[7] * scale);
  out[8] = a[8] + (b[8] * scale);
  return out;
}

/**
 * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
 *
 * @param {mat3} a The first matrix.
 * @param {mat3} b The second matrix.
 * @returns {Boolean} True if the matrices are equal, false otherwise.
 */
export function exactEquals(a, b) {
  return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] &&
         a[3] === b[3] && a[4] === b[4] && a[5] === b[5] &&
         a[6] === b[6] && a[7] === b[7] && a[8] === b[8];
}

/**
 * Returns whether or not the matrices have approximately the same elements in the same position.
 *
 * @param {mat3} a The first matrix.
 * @param {mat3} b The second matrix.
 * @returns {Boolean} True if the matrices are equal, false otherwise.
 */
export function equals(a, b) {
  let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7], a8 = a[8];
  let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5], b6 = b[6], b7 = b[7], b8 = b[8];
  return (Math.abs(a0 - b0) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
          Math.abs(a1 - b1) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
          Math.abs(a2 - b2) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a2), Math.abs(b2)) &&
          Math.abs(a3 - b3) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a3), Math.abs(b3)) &&
          Math.abs(a4 - b4) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a4), Math.abs(b4)) &&
          Math.abs(a5 - b5) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a5), Math.abs(b5)) &&
          Math.abs(a6 - b6) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a6), Math.abs(b6)) &&
          Math.abs(a7 - b7) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a7), Math.abs(b7)) &&
          Math.abs(a8 - b8) <= glMatrix.EPSILON*Math.max(1.0, Math.abs(a8), Math.abs(b8)));
}

/**
 * Alias for {@link mat3.multiply}
 * @function
 */
export const mul = multiply;

/**
 * Alias for {@link mat3.subtract}
 * @function
 */
export const sub = subtract;